Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele.

نویسندگان

  • Omar M Faruque
  • Hiroki Miwa
  • Michiko Yasuda
  • Yoshiharu Fujii
  • Takakazu Kaneko
  • Shusei Sato
  • Shin Okazaki
چکیده

Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Vigna radiata

The establishment of a root nodule symbiosis between a leguminous plant and a rhizobium requires complex molecular interactions between the two partners. Compatible interactions lead to the formation of nitrogen-fixing nodules, however, some legumes exhibit incompatibility with specific rhizobial strains and restrict nodulation by the strains. Bradyrhizobium elkanii USDA61 is incompatible with ...

متن کامل

The Soybean Rj4 Allele Restricts Nodulation by Bradyrhizobium japonicum Serogroup 123 Strains.

Of nine Bradyrhizobium japonicum serogroup 123 strains examined, 44% were found to be restricted for nodulation by cultivar Hill. Nodulation studies with soybean isoline BARC-2 confirmed that the soybean Rj4 allele restricts nodulation by the same serogroup 123 isolates. Immunological analyses indicated that B. japonicum strains in serogroups 123 and 31 share at least one surface somatic antigen.

متن کامل

Draft Genome Sequences of Bradyrhizobium elkanii Strains BLY3-8 and BLY6-1, Which Are Incompatible with Rj3 Genotype Soybean Cultivars

We report here the draft genome sequences of Bradyrhizobium elkanii strains BLY3-8 and BLY6-1, which are incompatible with Rj3 genotype soybean cultivars. The genome sequences of these strains will be useful to identify a causal gene for this incompatibility.

متن کامل

High-quality permanent draft genome sequence of the Bradyrhizobium elkanii type strain USDA 76T, isolated from Glycine max (L.) Merr

Bradyrhizobium elkanii USDA 76T (INSCD = ARAG00000000), the type strain for Bradyrhizobium elkanii, is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Glycine max (L. Merr) grown in the USA. Because of its significance as a microsymbiont of this economically important legume, B. elkanii USDA 76T was selected as part of ...

متن کامل

Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system.

Root-nodule symbiosis between leguminous plants and nitrogen-fixing bacteria (rhizobia) involves molecular communication between the two partners. Key components for the establishment of symbiosis are rhizobium-derived lipochitooligosaccharides (Nod factors; NFs) and their leguminous receptors (NFRs) that initiate nodule development and bacterial entry. Here we demonstrate that the soybean micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 19  شماره 

صفحات  -

تاریخ انتشار 2015